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a b s t r a c t

We propose a method to examine structural and behavioral determinants of residential electricity
consumption, by developing separate models for daily maximum (peak) and minimum (idle) con-
sumption. We apply our method on a data set of 1628 households’ electricity consumption. The results
show that weather, location and floor area are among the most important determinants of residential
electricity consumption. In addition to these variables, number of refrigerators and entertainment de-
vices (e.g., VCRs) are among the most important determinants of daily minimum consumption, while
number of occupants and high-consumption appliances such as electric water heaters are the most
significant determinants of daily maximum consumption. Installing double-pane windows and energy-
efficient lights helped to reduce consumption, as did the energy-conscious use of electric heater.
Acknowledging climate change as a motivation to save energy showed correlation with lower electricity
consumption. Households with individuals over 55 or between 19 and 35 years old recorded lower
electricity consumption, while pet owners showed higher consumption. Contrary to some previous
studies, we observed no significant correlation between electricity consumption and income level, home
ownership, or building age. Some otherwise energy-efficient features such as energy-efficient appliances,
programmable thermostats, and insulation were correlated with slight increase in electricity
consumption.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Residential buildings consume 39% of the total electricity in the
US, more than any other sector or building type [1]. Their electricity
consumption has increased by 27% from 1990 to 2008 anddpro-
vided the expected efficiency gains are realizeddis projected to
increase by 18% from 2009 to 2035. To meet this demand, 223 GW
of new generating capacity will be needed between 2010 and 2035,
75% of which is projected to be provided by fossil fuels [2]. Detailed
planning and execution of demand-side energy efficiency programs
is needed to reduce or stabilize residential electricity consumption,
and to prevent its harmful impact on the environment and on en-
ergy security [3,4].
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To effectively plan and execute energy efficiency programs, a
sound understanding of the determinants that drive household
electricity consumption (such as floor area, average outside tem-
perature, and number of occupants) is needed [5]. However,
because of lack of easily-accessible, high-resolution consumption
data, underlying determinants of energy use and energy-related
behaviors have not been extensively examined before [6].

With growing deployment of smart meters and real-time home
energy-monitoring services, data that allow studying such under-
lying determinants are becoming available (for examples of studies
using high-resolution consumption data, see Refs. [7e9]). However,
the methodologies to analyze the data and infer the results that can
be used to support decision making at the household level have not
yet been formalized [6].

To address that gap, this paper proposes a methodology to
analyze large data sets of residential electricity consumption to
derive insights for policy making and energy efficiency program-
ming. In particular, it offers a method to disaggregate the impact of
structural determinants (e.g., insulation level of the residence) from
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behavioral determinants (e.g., occupant habits). As a case study, we
use a large data set of 10-min interval smart meter data for 1628
households in the U.S. The data set is collected over 238 days in
2010, and is supported by an extensive 114-question survey of
household data. The household survey covers information about
the climate, location, physical characteristics of the dwelling, ap-
pliances, and occupants.

After a brief review of the gaps in existing literature, this paper
explains our model, experimental data set, and the results of the
our analyses.
2. Summary of limitations of existing models

Several studies have analyzed residential electricity consump-
tion and its determinants. For our purposes, we needed a bottom-
up model that could make use of high-resolution electricity con-
sumption data and a large set of information about the households.
We found that most existing studies were limited in supporting our
requirements, mostly because of:

(a) Use of aggregate (low-resolution) consumption data: Most
studies in the past have used monthly billing data, mainly
because the advanced metering technologies of today were not
easily accessible [10e18]. However, residential electricity con-
sumption has strong temporal variation, which is not captured
with low-resolution consumption data such as monthly bills
[9].

(b) Partial set of explanatory variables: Most previous studies have
analyzed only a partial set of residential electricity consump-
tion determinants; e.g., only appliance stock, weather condi-
tions, or behavioral factors [19,20]. However, interactions
among different factors (e.g., the relationship between
weather, appliance load, lighting load, and heating load) offer
considerable potential for improving energy efficiency [6].
Another limitation of some previous studies is the use of
“bundle” variables (such as Zip Code) that combine (hence
obscure) the effect of several underlying determinants.

(c) No distinction between “idle” consumption of the house and peak
consumption: Most studies in the past have either used peak
consumption or the total electricity load. However, analyzing
the lower limit of electricity consumption (i.e., idle load) gives
valuable insights on the physical characteristics of the building.
For example, a leaky building may have higher idle load
because the heater or AC (air conditioner) needs to run
constantly. Furthermore, as we will show in the paper, the
distinction between idle and maximum consumption helps to
disaggregate the effect of structural and behavioral factors on
residential electricity consumption.

(d) Using energy intensity as the only indicator for analyzing elec-
tricity consumption: Most studies have used energy intensity
(kWh per square foot) to compare residential electricity con-
sumption [21e27]. Scaling the electricity consumption by floor
area implies that, for example, a refrigerator in a 2000 sq.ft
house consumes twice as much as the same refrigerator in a
1000 sq.ft house. Instead, we scale only those factors whose
consumption is dependent on floor area (e.g., lighting and
heating loads), and use the unscaled kWh value for other
factors.
3. Model setup

Our proposed model addresses the limitations of existing
models by: (a) classifying explanatory variables based on their
interaction with each other and with electricity consumption; (b)
selecting a subset of variables that best explain electricity con-
sumption; (c) using different load features (e.g., daily peak and idle
load) to distinguish the effect of different variables on electricity
consumption; and (d) using a stepwise method to rank explanatory
variables based on their correlation with electricity consumption.

3.1. Explanatory variables

Through a review of residential electricity consumption models
and building sciences literature [5], we identified four major cate-
gories of determinants:

1. Weather and location. Examples: daily outdoor temperature
and climate zone; these determinants are normally outside the
scope of influence of the household.

2. Physical characteristics of the building. Examples: level of insu-
lation and fuel use for water heating; modifying these de-
terminants is normally considered long-term investments [28].
In return, the effect of such modifications is likely to persist
longer.

3. Appliance and electronics stock. Examples: the number of re-
frigerators or computers; modifying these determinants is
normally considered medium to short-term investments.

4. Occupancy and occupants’ behavior towards energy consump-
tion: determinants in this category have different levels of
effort and impact span. Some behavioral modification de-
terminants are of short-term effort and impact (e.g., proper
management of thermostat settings) [28]. Another group of
determinants are associated with long-term effort and impact
(e.g., purchasing energy-efficient appliances). Finally, some
determinants in this category are outside the scope of interest
to change (e.g., occupancy level during the day).

Behavioral factors show strong correlation with each other,
making multicollinearity an issue for the power and stability of the
regression model. We used FA (Factor Analysis) [29] to remove
multicollinearity of the variables, and identified latent variables
that are not captured by direct behavioral questions. Factor Analysis
reduces the number of variables by replacing them by potentially
lower number of linear combinations of original variables (called
factors) while conserving as much information as possible. Because
these factors are linear combinations of the original variables, they
are easy to interpret and can be assigned physical significance. In
short, Factor Analysis identifies the set of k latent factors
ðf1; f2;.; fkÞ that drive q observable variables (responses to survey
questions) indexed as xt ¼ ðx1; x2;.; xqÞ, where (Equation
(1) [30]):

x ¼ Lf þ u (1)

where L is the q � k matrix of factor loadings, and f and u are q � l
matrices of factors and variances.

While estimating L by the Maximum Likelihood method, Factor
Analysis identifies a rotation and a scale of L that contracts as
many coefficients to zero as possible. Having a sparse matrix L

increases the interpretability of the factor model, since any factor
will be created using only a few observable variables, hence
allowing us to bundle several inter-related variables and label
them as a factor.

3.2. Model selection

When working with a large number of explanatory variables,
even after Factor Analysis, the number of model variables may be
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too large to support a model that is easy to interpret and statisti-
cally stable. Furthermore, it is important to identify variables that
contribute the most to the variation in consumption to inform
future data collection efforts. Our preferred method for model se-
lection is stepwise selection [31] because (a) it ranks the variables
based on their importance; and (b) in sequentially adding variables
to the model, it minimizes multicollinearity.

The forward stepwise algorithm starts with the mean value of
the consumption (i.e., the intercept) and then sequentially adds to
the model the variable that best improves the fit, as measured by
the AIC (Akaike Information Criteria [32]), given by Equation (2):

AIC ¼ �2:log Lþ 2edf (2)

where L is the likelihood and edf is the equivalent degrees of
freedom (i.e., the number of free parameters for usual parametric
models) of fit. The backward stepwise algorithm starts with the full
model, then sequentially drops the variables that least hurt the fit,
as measured by AIC. Forward and backward stepwise procedures
usually result in similar models [31].
3.3. Response variables

We considered four different features of the hourly electricity
consumption data: daily average, minimum, maximum, and
maximum-minus-minimum (also called “range”). Daily minimum,
maximum, and average values for each user were calculated for
each day of the experiment (238 values for each user). Then, these
238 values for each user were averaged over the summer and
winter (partial) periods, resulting in two daily minimum, two daily
maximum, two daily average, and two daily maximum-minus-
minimum consumption values for each user (eight values in total
for each user). Then separate regression models were fitted to each
load feature for each season (eight regression models). Each
regression model consists of 952 response variables (one value for
each user).
3.4. Regression model

We used aweighted regressionmodel to explain the variation in
household electricity consumption. Those determinants whose
contribution to electricity consumption has a linear relationship
with floor area (e.g., insulation level) are multiplied by the floor
area of the residence, while other variables (e.g., number of re-
frigerators) are included without a multiplier. The regression
equation of our model is given by:

yjb0j þ
XM

i¼1

bijXij þ Xj,
XK

i¼Mþ1

bijXij þ 3j; (3)

where yj is the electricity consumption (kWh) of household j, Xij is
the value of the determinant i for household j, and bij is the
regression coefficient for that determinant. M is the number of
variables (household features) that do not depend on floor area,
while K is the total number of variables, and 3is the error term.

To summarize, our method enables working with large data sets
of electricity consumption data and extensive household surveys,
by (a) using different load features that help to understand different
aspects of consumption (e.g., long-term steady idle load versus
short-term volatile peak load); (b) selecting a subset of variables
that contribute the most to each load feature; (c) ranking the
contribution of different variables to each load feature through a
stepwise model; and, (d) properly considering the effect of floor
area, by using a weighted regression model.
4. Data summary and preprocessing

We applied our model to a data set of 10-min interval smart
meter data for 1628 households, collected over 238 days from
February 28, 2010 to October 23, 2010. Detailed data about
household characteristics were available via a 114-questions online
survey, covering a wide range of characteristics including climate
and location, building characteristics, appliances and electronics
stock, demographics, and occupants’ behavior.

Participants were provided with a device that recorded the
electricity consumption of the household for every 10 min and sent
the data to a central server to be stored. The device installation and
server costs were covered by the experiment administrators (for
more details of the experiment, refer to Ref. [33]).

Participants were employees of a technology company in Silicon
Valley and voluntarily participated in the experiment. They all paid
for their own electricity bill. More than 50% of the participants
reported income levels higher than $150,000. However, it is worth
mentioning that the mix of households in our study (i.e., well-
educated, upper and middle class families who are also early
adopters of new technologies such as home energy monitoring
systems) is also more likely to respond to energy efficiency pro-
grams by investing in energy-efficient products [34]. Hence, the
results of our analysis can be particularly helpful to energy effi-
ciency program managers and policy makers to develop programs
specifically targeted towards the households represented by our
sample.

After collecting the data, 952 households for which reliable
smart meter and survey data were available were selected for the
analysis. Less than 3% of survey responses were inconsistent or
missing, for which we imputed data using iterative model-based
imputation techniques ([35,36]). After the initial screening, we
did not observe any outliers in the data set. Selected households
were located in 419 different Zip Codes, 140 different counties, 26
different states, and were spread across all six climate zones
defined by the Department of Energy [1]. California had the largest
representation (53% of households) of all states in the data set.
During the data collection process, the weather conditions in most
areas where participant households resided were similar to the 30-
year average climatic conditions; however, some areas, especially
in the north east of the U.S., experienced slightly higher-than-
normal temperatures [37]. Average electricity consumption in our
sample lied between California and US averages. Some structural
determinants such as household size, square footage of the house,
and the proportion of single family detached units in our sample
were close to US population averages [33].

We analyzed the consumption data at hourly level to ensure that
the fluctuations in electricity consumption are considered, but not
obscured by sudden spikes in the consumption. This also makes the
results of our analysis comparablewith those of previous studies on
smart meter data and electricity market analysis [38].

We transformed some variables to better reflect the technical
characteristics of buildings. For example, we transformed the
construction year to a categorical variable that indicated the resi-
dential building code that was effective at the time of the con-
struction (i.e., different revisions of ASHRAE 90.2 [1]). We also
included a categorical variable for House Size to capture the effects
of the floor area that are not completely explained by square
footage. For example, when a building’s floor area passes a certain
threshold, the type of structural and architectural material that is
used in the building often changes significantly. Since we do not
have a separate variable for floor area and are not dividing the
electricity consumption of the dwelling by its floor area, intro-
ducing the House Size variable does not create a multicollinearity
problem (Table 1).



Table 1
Summary statistics of the daily maximum, minimum, and average hourly con-
sumption, averaged overall users in the case study. The variability in daily minimum
hourly consumption is the lowest, and that of the daily maximum is the largest.

Variable No. of days Min Median Mean Max Standard
Dev.

Daily minimum, kWha 238 0.2 0.4 0.4 0.5 0.039
Daily average, kWha 238 0.5 0.8 0.9 1.2 0.1
Daily maximum, kWha 238 1.7 2.5 2.5 3.5 0.256

a Averaged overall households.
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The household survey included 40 questions on the attitudes of
occupants towards energy consumption. Using Factor Analysis as
was explained in previous sections, and informed by behavioral
sciences research, we formed 22 major factors that collectively
explain more than 80% of the information included in the original
40 questions; i.e., the threshold value in the scree test for choosing
the number of factors was explaining 80% of the variance. The 22
variables explain the attitudes of households in three groups: (1)
Energy Efficiency Actions, (2) Information Seeking Behaviors, and
(3) Home Improvements Behaviors. After Factor Analysis, adding a
number of transformations of the original variables, and removing
some variables, the total number of variables was reduced from 114
to 97. We fit separate models to daily maximum, minimum,
maximum minus minimum, and average consumption, both for
summer and winter (for the period when the data were available),
and ranked the variables by their importance through a forward
stepwise model selection procedure (Fig. 1).

5. Results

A comparison of the results of our models shows that the daily
minimum consumption is influenced the most by weather, loca-
tion, and physical characteristics of the building. On the other hand,
daily maximum consumption is influenced the most by end uses
that are energy-intensive and do not run constantly (e.g., electric
water heater). This group of end uses mostly depends on the oc-
cupancy levels and activities of occupants. These results are sum-
marized in Tables 2 and 3 (forward stepwise results), and Table 4
(backward stepwise results).

Overall, locality (indicated by a proxy such as Zip Code) and
House Size demonstrate considerable correlation with residential
electricity consumption, most likely because they are correlated
with several other variables that influence energy consumption. For
example, Zip Code is often correlated with climate, building type,
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Fig. 1. Comparison of daily average, maximum, and minimum consumption, averaged
over all users for each day of the experiment.
type of systems used in the building, building materials, and so-
cioeconomic status of the household. On the other hand, House Size
is often correlated with affluence, socioeconomic status, number of
residents, and appliance stock.

5.1. The effect of external determinants on residential electricity
consumption

Zip Code explains up to 46% of the variability in consumption.
However, once Zip Code is removed from the models, underlying
drivers of electricity consumption such as Cooling Degree Days are
highlighted.

CDD (Cooling Degree Day) is the dominant factor in the summer,
explaining 38% of the variability in total electricity consumption.
On the other hand, HDD (Heating Degree Day) is not a significant
factor, even in the winter model. We offer an explanation for this
observation in Section 5.2. Other studies have also reported similar
results on the effect of Zip Code and cooling load on electricity
consumption [39e42].

5.2. The effect of physical characteristics of the dwelling

House Size is the most important factor among building char-
acteristics in our models, while house age, type of building, and
ownership status do not show significant impact on electricity
consumption in our sample. Other variables such as installing
double-pane windows and energy-efficient lighting fixtures show
correlation with reduced electricity use. The following sections
explain these results in more detail.

5.2.1. Type of building
Type of Building is a significant factor in the winter daily

maximum model, where heating load dominates. In the winter,
households who live in multifamily apartments have the lowest
daily maximum consumption, followed by town houses; finally,
detached (free-standing) houses have the highest daily maximum
consumption in the winter. Similar results have been reported
previously ([5,43]).

5.2.2. House Size
House Size has a dual effect on daily minimum and daily

maximum consumption. Daily minimum consumption is much
more correlated with House Size during the winter (House Size
explains 21% of the variability in winter minimum consumption,
while it explains only 2% of the variability in summer minimum).
On the other hand, House Size has a much larger impact on daily
maximum consumption during the summer compared withwinter.
Both observations can be explained by the relationship of House
Size with heating and cooling loads, and the nature of these two
loads. First, larger houses require more heating and cooling loads,
both because they have more volume to condition, and because
they have higher heat loss or gain with the outside. Also, heating
load tends to have a more consistent nature, especially when sys-
tems such as radiant heating are used. Cooling load, on the other
hand, tends to have a more intermittent nature, since the air
conditioner compressor only needs to run intermittently to pro-
duce cool air.

5.2.3. House age
We did not observe any significant correlation between elec-

tricity consumption and building age. While some previous studies
have observed an increase in household electricity consumption of
new houses due to more penetration of air conditioning and other
high-consumption appliances [44], other studies have observed the
reverse, reporting a decrease in household electricity consumption



Table 2
Summary of the most important factors explaining different features of residential electricity consumption (forward stepwise regression). F: full model; P: partial model (excluding Zip Code and Floor Area). Only percentages
greater than 2% are included in this table.

Variable Min Max MaxeMin Average

Summer Winter Summer Winter Summer Winter Summer Winter

F P F P F P F P F P F P F P F P

Ave. of CDD 26% 31% 27% 38%
Climate Zone 2% 3%
Zip Code 12% 12% 39% 26% 37% 25% 46% 17%
House Size 2% 21% 11% 2% 9% 12% 23%
Type of bldg 12% 2%
Ownership of elec.
Water heater 4% 4% 11% 2% 6% 5% 12% 2% 5%
Ownership of elec.
Clothes dryer 2% 2% 3% 3% 2% 4%
Nb of Spas/Pools 2% 2% 2%
Nb of freezers 3% 2%
Nb of refrig’s 7% 7% 7% 7% 3% 4% 4% 3% 2% 2% 3% 2% 3% 4% 6% 6%
Nb of entert’t devices
Except TV’s 3% 2% 4% 2%
Total nb of occup’ts 8%
Total nb of occup’ts (sq. rt)

2% 2% 2% 4% 2% 3% 7% 4% 2% 2%
Pet ownership 2% 2% 2% 4% 3% 2% 3%
Purchasing E-Star Appl’s 2% 2% 2% 3% 2%
Energy Conserv’n w.r.t. Elec.

Heater Usage 2% 2% 2% 2%
Turning lights off when not in use

19% 13% 20%
Motivated to reduce conmspt’n to

address Global Warm. 2% 2% 3%
Degrees of Freedom 871 919 875 931 873 916 873 918 871 915 886 921 871 915 875 918
Adjusted R2 0.56 0.48 0.50 0.43 0.61 0.56 0.51 0.47 0.56 0.51 0.45 0.43 0.68 0.59 0.58 0.52
F-statistic 15.9(80) 28.5(32) 13.6(76) 37.5(32) 20.3(78) 35.9(35) 13.5(78) 26.3(33) 16.0(80) 28.7(36) 13.2(65) 24.5(30) 25.8(80) 38.6(36) 18.1(76) 32.2(33)
P-value 2.2e-16 2.2e-16 2.2e-16 2.2e-16 2.2e-16 2.2e-16 2.2e-16 2.2e-16 2.2e-16 2.2e-16 2.2e-16 2.2e-16 2.2e-16 2.2e-16 2.2e-16 2.2e-16
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Table 3
Model coefficients for statistically significant variables of forward stepwise regression models. The mean and standard deviation of each load feature are shown in parentheses
at the table header. Shaded cells highlight negative values.

A. Kavousian et al. / Energy 55 (2013) 184e194 189
for newer houses, attributing that pattern to improved insulation
and use of more efficient lighting and air conditioning stock [45,46].
Our hypothesis is that in our sample, these two forces have
canceled out each other’s effect, resulting in a uniform trend be-
tween household electricity consumption and the age of the house.
Another possible explanation for the uniform trend in our data is
that the physical conditions of buildings have been maintained
through time, possibly due to the enforcement of building
regulations.

When we grouped the households into different time periods
based on the prevalence of different ASHRAE 90.2 residential
building codes, we observed that the houses that were built before
1975 on average consumed less electricity than the houses that
were built between 1993 and 2003 (p-values ¼ 0.00266 and
0.00105, respectively). A potential explanation for this trend is the
increased penetration of air conditioners and other high-
consumption appliances in newer houses.

5.3. The effect of appliance stock and electronics

As Tables 3 and 4 show, number of refrigerators is a statistically
significant factor in almost all models, but its effect is more high-
lighted in the daily minimum consumption. Former studies show
that (a) refrigerators are the largest electricity consumer among
household appliances (according to Ref. [44] in 2001, refrigerators
consumed 14% of total electricity delivered to U.S. homes, only
second to air conditioners who consumed 15%), and (b) the sec-
ondary refrigerators in the US households are on average consid-
erably older (and less-efficient) than the primary refrigerators [44].
Therefore, the ownership of more than one refrigerator in a
household implies a high probability of having an inefficient, high-
consumption fixture, hence the significant contribution of the
number of refrigerators to household electricity consumption.

Other than refrigerators that have a steady load, most high-
consumption, intermittent appliances such as electric water heat-
er, electric clothes dryer, and Spas/Pools primarily contribute to
daily maximum consumption. These are the appliances that are not
“always on” and their operating schedules are dependent on the
activities and habits of the occupants. Therefore, they are indicators
of (and are driven by) occupants’ habits and activities rather than
the location and physical characteristics of the dwelling, hence
their correlation with daily maximum load. Our results are in line
with former studies who have shown the large impact of high-
consumption appliances on total electricity consumption. For
example, according to the U.S. Energy Information Administration,
air conditioners, electric water heaters, and laundry appliances
consume 16.0%, 9 1%, and 6.7% of the total electricity consumption
in US households, respectively [44]. Similarly in Europe, according



Table 4
Model coefficients for statistically significant variables of backward stepwise regression models. Shaded cells highlight negative values.
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to EuroAce, 57% of the energy consumed in buildings is used for
space heating, 25% for hot water, 11% for lighting and electrical
appliances, and 7% for cooking [47].

In somemodels, some building shell insulation variables such as
basement insulation had positive coefficients, implying that
controlled for other factors, insulated houses in our sample
consumedmore electricity on average. However, this effect was not
physically substantial. Previous studies who have examined the
effect of insulation on electricity consumption have also reported
mixed results. While some have verified that insulation reduces
electricity consumption [48e50], some others have reported no
significant correlation between insulation level and residential
electricity consumption [39]. Still, another group of studies have
reported that buildings with higher insulation ratings are likely to
consume more electricity [51]. Several reasons may contribute to
increased energy consumption in well-insulated homes. One po-
tential reason for positive correlation of insulation and energy
consumption is higher cooling load in well-insulated houses due to
the heavier use of AC instead of natural ventilation [52]. This is
relevant since our data set covered the entire summer but not the
entire winter months, so the effect of cooling loads on our results is
more significant. Another potential reason for this observation is
the positive correlation of insulation with House Size, appliance
stock, or income [53], all of which are correlated with higher
electricity consumption. Finally, the relationship between insu-
lation and electricity consumption may be in the opposite direc-
tion: larger houses with higher energy consumption are more
motivated (and more plausible) to add extra insulation; i.e., insu-
lationmight have been a result of high consumption, not a cause for
it. If it was not for the insulation, these houses would have
consumed much higher energy than other houses, but insulation
helps to mitigate that effect [51].

Use of energy-efficient lights was correlated with lower con-
sumption, as did the use of double-pane windows. Finally, use of
programmable thermostats was correlated with increased elec-
tricity consumption. One possible explanation for this trend is that
programmable thermostats turn the air conditioner or heater on at
certain times, even if the house is not occupied. Therefore theymay
actually increase heating or cooling load compared with manual
settings, especially when the house is not occupied regularly.
Finally, our data did not show a statistically significant difference in
electricity consumption between rented and owned houses, con-
trary to several previous studies [43].

5.4. The effect of occupants

We analyzed the effect of occupants from three different per-
spectives: the effect of occupancy level, the effect of occupant
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behavior (long-term habits and preferences), and the effect of
occupant socioeconomic status. The following sections summarize
our results.

5.4.1. The effect of occupancy level
Number of occupants is a significant variable in daily maximum

models, while it is not a significant variable in daily minimum
models. This observation supports the notion that the presence of
occupants primarily impacts the consumption in excess of the daily
minimum. Furthermore, the models suggest a non-linear rela-
tionship between household electricity consumption and the
number of occupants, selecting the square root of number of oc-
cupants over the number of occupants. In other words, our model
verifies that when the number of occupants double, electricity
consumption increases at a slower rate (1.4 in our data), leading to
the conclusion that larger households have higher aggregate elec-
tricity consumption but lower per capita consumption. A similar
concave relationship between number of occupants and electricity
consumption has been reported in former studies [54e56].

Pet ownership is a statistically significant factor in the models,
while the magnitude of its impact is the largest for the summer
daily minimum, winter daily maximum, and winter daily
maximumeminimum models. The effect is significant even after
removing the effect of other significant variables. Our hypothesis
for explaining the correlation between pet ownership and higher
electricity consumption is two-fold: (a) it is likely that people who
have pets spend more time at home, and (b) even when they leave
home, they do not completely turn the AC off. Therefore, pet
ownershipmay be a proxy for the percentage of time that the house
is “active”. Further research is needed to validate this hypothesis.

Age of occupants showed a significant correlation with elec-
tricity consumption. Specifically, households with occupants older
than 55 and between 19 and 35 showed lower electricity con-
sumption. The older household members tend to be more
conscious about the way they use electricity, and also tend to use
less electric gadgets. On the other hand, household members be-
tween 19 and 35 are more likely to have a full-time job and
therefore are less at home. These observations suggest that both the
occupancy rate (howmuch time one spends at home) and intensity
of energy use of household members influence electricity con-
sumption [57].

5.4.2. The effect of long-term habits and preferences
Behavioral factors that have long-term impacts (such as Pur-

chasing Energy-Star Appliances and Air Conditioners) or are
considered long-term habits (such as adjusting thermostat settings
moderately) are significant explanatory variables for daily mini-
mum consumption.

As Table 3 shows, in the daily minimum model, the behavior of
Purchasing Energy-Star Appliances and Air Conditioners has a
positive coefficient. This suggests that, in our study sample, con-
trary to common belief, households that have expressedmotivation
to buy energy-efficient appliances and air conditioners have higher
levels of daily minimum consumption, after adjusting for all other
variables. Since most new higher-end appliances are energy-star,
the tendency to purchase energy-star appliances may simply
mean buying new, high-quality appliances, which is by itself a
proxy for wealth [58e61]. Another explanation for the positive
coefficient of energy-star appliances the “rebound effect”, where an
increase in the efficiency of appliances results in increased use of
them, hence an increase in overall energy consumption [3,6].

Another long-term habit, Turning Off Lights When Not in Use, is
significant in most winter models but not at all significant in
summer models. A closer look at this variable reveals a significant
geographical pattern: people in the two coasts in our sample
declare much higher rates of turning off lights when not in use.
Also, this variable becomes insignificant when Zip Code is included
in the model, which is another evidence to its geographical trend.
Last, in models where this variable is indeed significant, its coeffi-
cient is positive, implying that those in our sample who declare
they turn lights off when leaving the room consume more energy
on average. Our conclusion is that Turning Off Lights When Not in
Use is capturing a latent factor in our sample, and further data are
needed to quantify the effect of energy-conscious behavior of
turning off unnecessary lights.

5.4.3. Effect of income level
We did not observe any statistically significant correlation be-

tween income level and electricity consumption. The relationship
between household income and energy consumption has been the
subject of extensive research. While a large number of studies have
concluded that energy consumption increases monotonically with
income [19,28,51,62e65], a number of studies have reported
observing an inverted U-path relating energy consumption and
household income [59,66,67]. At the same time, the effect of in-
come on household electricity consumption has been shown to be
mediated by ownership of appliances; i.e., income of the household
impacts the consumption through affecting the stock (quantity and
quality) of appliances [17,27,68,69]. This is especially true for pop-
ulations like our samplewhere households are similar to each other
in socioeconomic status and therefore the income effect is minimal.

6. Conclusions

Summarizing our findings, we showed that:

(a) Factors that influence residential electricity consumption can
be categorized into fourmajor groups: external conditions (e.g.,
location and weather), physical characteristics of dwelling,
appliance and electronics stock, and occupants.

(b) Each of the four categories above, on average, has a different
time span and effort level for modification; while location,
weather, and occupancy are outside the scope of influence for
modification, physical characteristics of the building, appliance
stock, and occupant behavior factors can be modified in long-
term, medium-term, and short-term investment spans,
respectively. Accordingly, the persistence of the modification
effect is generally proportional to the level of effort and in-
vestment that was allocated to it.

(c) Daily minimum and daily maximum consumption are
explained by different sets of explanatory factors. Daily mini-
mum has a lower variation level compared with daily
maximum, and is best explained by factors that are steady
through time, such as weather (Degree Days), location (Zip
Code), House Size, and number of refrigerators. On the other
hand, daily maximum is best explained by large and inter-
mittent loads such as electric water heater and air conditioners.

(d) Using our model, we were able to explain 55e65% of the
variability in electricity consumption, as measured by the R2 of
the regression model. This is comparable with most studies in
the past. Using variable transformations and other machine
learning techniques [70], we were able to achieve R2 values of
above 70%. However, we prefer the linear model due to its
interpretability. Furthermore, we deliberately did not use var-
iables such as households’ estimate of their electricity bill
(available from the survey) that improve the R2 of the fit, but
add little explanatory significance to the results of the model.

(e) Overall, weather and physical characteristics of the building
illustratemore influence on residential electricity consumption
compared to other categories such as occupant behavior. These
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results are comparable with the work of [43] who showed that
building characteristics determine 42% of the variability in
residential electricity consumption, whereas occupant
behavior explains 4.2%. Within the physical characteristics of
the building, floor area, type of building, and use of electric
water heater contributed the most to consumption, whereas
within the appliance stock, number of refrigerators was the
most important factor. Finally, pet ownership (which can be
considered a proxy for the percent of time that the house is
active) was a significant factor in explaining variation in elec-
tricity consumption.

7. Policy implications

Based on the results of our models, we highly recommend
policies and regulations aimed at improving the thermal perfor-
mance of buildings, including both improvements to the insulation
level of the dwelling and improving the efficiency of the stock of air
conditioning and electric heaters. Since certain end uses such as
space heating are more prone to rebound effects [19], we strongly
recommend provisions for regular home energy audits in codes and
regulations [49]. Furthermore, we recommend policies and regu-
lations aimed at improving the efficiency of the appliance stock.
Certain end uses such as refrigerators illustrate great potential for
consumption reduction. Policies and programs that encourage the
purchase of energy-efficient refrigerators and other appliances
must also devise provisions for buying back the old refrigerators or
make the financial incentive contingent on households returning
the old refrigerators.

Most high-consumption, intermittent appliances such as elec-
tric water heater, electric clothes dryer, and Spas/Pools demand
high volume and intermittent electric loads, hence are attractive
targets for load shifting programs. Since these end uses are pri-
marily driven by occupants’ habits and activities, respective energy
efficiency programs should be focused on behavioral modification.
For example, educational campaigns encouraging households to
use larger loads of laundry, to lower the temperature of their
electric water heaters, or to shift their laundry time to a more
appropriate time in the day can be effective in this regard.

In terms of the impact of behavioral factors, our results agree
with some previous works that residential electricity consumption
is primarily determined through theway households use electricity,
and less by the way that they value energy efficiency [28,40].
However, energy-saving values usually impact efficiency through
“habits” such as Purchasing Energy-Star Appliances. A dual
approach as suggested by Kelly [51], where less efficient homes are
encouraged to perform structural changes (such as adding insu-
lation) while more efficient homes are motivated to reduce con-
sumption through behavioral interventions and economic
incentives is supported by our analyses [40]. Energy saving values
and habits are shown to respond to changes in price of electricity
[63,71]; therefore, behavior modification programs can be more
effective when supported by monetary and regulatory policies.
8. Future work

More data are needed to validate some of the findings of this
paper. Specifically, household data from a more heterogeneous
sample over a larger period of time are needed for validating the
generality of these results. The use of self-reports to measure
behavior may have introduced some bias in the data, called “social
desirability” bias [72]. However, since the purpose of this study was
to explain the variability in electricity consumption, and the
households in our study were all from middle and upper social
class, we assume that the bias in responses was uniform over the
respondents and therefore the results of the model explain the
variability in electricity consumption with a reasonable accuracy.

In this paper, we examined energy consumption and its features
such as daily maximum andminimum consumption, and explained
their variability using household data. A potential follow-up to this
study is to develop a metric for quantifying energy efficiency of the
households, and compare households using that metric instead of
their consumption data. Such metric needs to be defined in a way
that recognizes the inherent differences among different groups of
households and at the same time enables comparison across those
different groups.
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